ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 66841  (#1)

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

Карта Квадрландии представляет собой квадрат $6\times 6$ клеток. Каждая клетка – либо королевство, либо спорная территория. Королевств всего 27, а спорных территорий 9. На спорную территорию претендуют все королевства по соседству и только они (то есть клетки, соседние со спорной по стороне или вершине). Может ли быть, что на каждые две спорные территории претендует разное число королевств?
Прислать комментарий     Решение


Задача 66842  (#2)

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

Какое наибольшее количество различных целых чисел можно выписать в ряд так, чтобы сумма каждых 11 подряд идущих чисел равнялась 100 или 101?
Прислать комментарий     Решение


Задача 66843  (#3)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Ромбы. Признаки и свойства ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9,10,11

На диагонали AC ромба ABCD построен параллелограмм APQC так, что точка B лежит внутри него, а сторона AP равна стороне ромба. Докажите, что B – точка пересечения высот треугольника DPQ.
Прислать комментарий     Решение


Задача 66844  (#4)

Темы:   [ Многочлены (прочее) ]
[ Тождественные преобразования ]
Сложность: 4
Классы: 8,9,10,11

Автор: Юран А.Ю.

Целое число n таково, что уравнение $x^2+y^2+z^2-xy-yz-zx=n$ имеет решение в целых числах. Докажите, что тогда и уравнение $x^2+y^2-xy=n$ имеет решение в целых числах.
Прислать комментарий     Решение


Задача 66845  (#5)

Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9,10,11

На доске $8\times 8$ в клетках a1 и c3 стоят две одинаковые фишки. Петя и Вася ходят по очереди, начинает Петя. В свой ход игрок выбирает любую фишку и сдвигает её либо по вертикали вверх, либо по горизонтали вправо на любое число клеток. Выиграет тот, кто сделает ход в клетку h8. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл соперник? В одной клетке может стоять только одна фишка, прыгать через фишку нельзя.

Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .