ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что если окружность ортогональна двум окружностям пучка, то она ортогональна и всем остальным окружностям пучка.

Вниз   Решение


Клетчатая прямоугольная сетка m×n связана из верёвочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную верёвочку. Если не останется ни одного замкнутого верёвочного контура, то игрок, сделавший последний ход, считается проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть?

ВверхВниз   Решение


Найти геометрическое место центров вписанных в треугольник ABC прямоугольников (одна сторона прямоугольника лежит на AB).

ВверхВниз   Решение


Известно, что в некотором треугольнике медиана, биссектриса и высота, проведенные из вершины C, делят угол на четыре равные части. Найдите углы этого треугольника.

ВверхВниз   Решение


Расшифровать пример на умножение, если буквой Ч зашифрованы чётные числа, а буквой Н – нечётные.

ВверхВниз   Решение


Найдите остаток от деления 2100 на 3.

ВверхВниз   Решение


Автор: Saghafian M.

Любые три последовательные вершины невыпуклого многоугольника образуют прямоугольный треугольник. Обязательно ли у многоугольника найдется угол, равный $90$ или $270$ градусам?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 78016

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 4
Классы: 9,10

На двух лучах l1 и l2, исходящих из точки O, отложены отрезки OA1 и OB1 на луче l1 и OA2 и OB2 на луче l2; при этом $ {\frac{OA_1}{OA_2}}$$ \ne$$ {\frac{OB_1}{OB_2}}$. Определить геометрическое место точек S пересечения прямых A1A2 и B1B2 при вращении луча l2 около точки O (луч l1 неподвижен).
Прислать комментарий     Решение


Задача 109017

Темы:   [ Окружность Ферма-Аполлония ]
[ ГМТ - окружность или дуга окружности ]
[ Метод координат на плоскости ]
Сложность: 4
Классы: 8,9,10

На плоскости даны точки A и B . Доказать, что множество всех точек M , удалённых от A в 3 раза больше, чем от B , есть окружность.
Прислать комментарий     Решение


Задача 57177

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 4+
Классы: 9

Докажите, что множество точек X, обладающих тем свойством, что  k1A1X2 + ... + knAnX2 = c:
а) при  k1 + ... + kn$ \ne$ 0 является окружностью или пустым множеством;
б) при  k1 + ... + kn = 0 является прямой, плоскостью или пустым множеством.
Прислать комментарий     Решение


Задача 54550

 [Окружность Аполлония.]
Темы:   [ Окружность Ферма-Аполлония ]
[ Отношение, в котором биссектриса делит сторону ]
[ Метод координат на плоскости ]
Сложность: 5-
Классы: 8,9

Найдите геометрическое место точек, расстояния от каждой из которых до двух данных точек относятся как m : n.

Прислать комментарий     Решение


Задача 57178

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 5
Классы: 9

Прямая l пересекает две окружности в четырех точках. Докажите, что четырехугольник, образованный касательными в этих точках, описанный, причем центр его описанной окружности лежит на прямой, соединяющей центры данных окружностей.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .