Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Докажите, что в правильной треугольной пирамиде двугранный угол между боковыми гранями больше чем 60°.

Вниз   Решение


На плоскости расположено 20 точек, никакие три из которых не лежат на одной прямой, из них 10 синих и 10 красных.
Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.

ВверхВниз   Решение


  а) Скупой рыцарь хранит золотые монеты в шести сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну в эти два сундука. Еще он заметил, что если открыть любые 3, 4 или 5 сундуков, то тоже можно переложить лежащие в них монеты таким образом, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга так и не узнал, можно ли разложить все монеты поровну по всем шести сундукам. Можно ли, не заглядывая в заветные сундуки, дать точный ответ на этот вопрос?
  б) А если сундуков было восемь, а Скупой рыцарь мог разложить поровну монеты, лежащие в любых 2, 3, 4, 5, 6 или 7 сундуках?

ВверхВниз   Решение


Пусть   = ,  где    – несократимая дробь.
Докажите, что неравенство  bn+1 < bn выполнено для бесконечного числа натуральных n.

ВверхВниз   Решение


Докажите, что  n² + 1  не делится на 3 ни при каком натуральном n.

ВверхВниз   Решение


Точка M – середина бокового ребра AA1 параллелепипеда ABCDA1B1C1D1 . Прямые BD , MD1 и A1C попарно перпендикулярны. Найдите высоту параллелепипеда, если BD=2a , BC=a , A1C=4a .

ВверхВниз   Решение


а) Докажите, что  p² – 1  делится на 24, если p – простое число и  p > 3.
б) Докажите, что  p² – q²  делится на 24, если p и q – простые числа, большие 3.

ВверхВниз   Решение


Автор: Фомин Д.

На доске выписаны числа 1, ½, ⅓, ..., 1/100. Выбираем из написанных на доске два произвольных числа a и b, стираем их и пишем на доску число
a + b + ab.  Такую операцию проделываем 99 раз, пока не останется одно число. Какое это число? Найдите его и докажите, что оно не зависит от последовательности выбора чисел.

ВверхВниз   Решение


Дано равенство  (am1 – 1)...(amn – 1) = (ak1 + 1)...(akl + 1),  где a, n, l и все показатели степени – натуральные числа, причём  a > 1.
Найдите все возможные значения числа a.

ВверхВниз   Решение


Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?

Вверх   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 329]      



Задача 111533

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

Найдите радиус окружности, внутри которой расположены две окружности радиуса r и одна окружность радиуса R так, что каждая окружность касается двух других.
Прислать комментарий     Решение


Задача 111534

Темы:   [ Касающиеся окружности ]
[ Формула Герона ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 8,9

На отрезке и двух его неравных частях длины 2a и 2b построены полуокружности, лежащие по одну сторону от отрезка. Найдите радиус окружности,касающейся трёх построенных полуокружностей.
Прислать комментарий     Решение


Задача 115282

Темы:   [ Касающиеся окружности ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

Четыре окружности попарно касаются внешним образом (в шести различных точках). Пусть a , b , c , d — их радиусы, a = , b = , g = , d = . Докажите, что

2(a2+b2+g2+d2)= (a+b+g+d)2.

Прислать комментарий     Решение

Задача 115290

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой.
Прислать комментарий     Решение


Задача 115291

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Окружности S1 и S2 касаются внешним образом в точке F . Их общая касательная l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB , касается окружности S2 в точке C и пересекает S1 в точках D и E . Докажите, что общая хорда окружностей, описанных около треугольников ABC и BDE , проходит через точку F .
Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .