Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба).

Вниз   Решение


Автор: Фольклор

B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный?

ВверхВниз   Решение


Расставьте по кругу четыре единицы, три двойки и три тройки так, чтобы сумма любых трёх подряд стоящих чисел не делилась на 3.

ВверхВниз   Решение


30 тремя одинаковыми цифрами. Число 30 запишите в виде четырех различных выражений, из трех одинаковых цифр каждое. Цифры могут быть соединены знаками действий.

ВверхВниз   Решение


Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.

ВверхВниз   Решение


Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
Bерно ли, что a перпендикулярна α?

ВверхВниз   Решение


Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата.

ВверхВниз   Решение


Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.

ВверхВниз   Решение


Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



Задача 105219

Темы:   [ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ - прямая или отрезок ]
Сложность: 4-
Классы: 8,9

На биссектрисе данного угла фиксирована точка. Рассматриваются всевозможные равнобедренные треугольники, у которых вершина находится в этой точке, а концы оснований лежат на разных сторонах этого угла. Найти геометрическое место середин оснований таких треугольников.

Прислать комментарий     Решение

Задача 54456

Темы:   [ Биссектриса угла (ГМТ) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Формула Герона ]
Сложность: 4
Классы: 8,9

На биссектрисе острого угла AOC взята точка B. Через точку B проведена прямая, перпендикулярная к OB и пересекающая сторону AO в точке K, а сторону OC – в точке L. Через точку B проведена еще одна прямая, пересекающая сторону AO в точке M (M – между O и K), сторону OC — в точке N, причём так, что  ∠MON = ∠MNO.  Известно, что  MK = a,  LN = 3a/2.  Найдите площадь треугольника MON.

Прислать комментарий     Решение

Задача 107770

Темы:   [ Биссектриса угла (ГМТ) ]
[ Системы линейных уравнений ]
[ Четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Рассматривается выпуклый четырёхугольник ABCD. Пары его противоположных сторон продолжены до пересечения: AB и CD – в точке P, CB и DA – в точке Q. Пусть lA, lB, lC и lD – биссектрисы внешних углов четырёхугольника при вершинах соответственно A, B, C, D. Пусть lP и lQ – внешние биссектрисы углов соответственно APD и AQB (то есть биссектрисы углов, дополняющих эти углы до развёрнутого). Обозначим через MAC точку пересечения lA и lC, через MBD – lB и lD, через MPQ – lP и lQ. Докажите, что, если все три точки MAC, MBD и MPQ существуют, то они лежат на одной прямой.

Прислать комментарий     Решение

Задача 115658

Тема:   [ Биссектриса угла (ГМТ) ]
Сложность: 4
Классы: 8,9

В треугольнике ABC точка I — центр вписанной окружности. Точки M и N — середины сторон BC и AC соответственно. Известно, что угол AIN прямой. Докажите, что угол BIM — также прямой.
Прислать комментарий     Решение


Задача 53936

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Биссектриса угла (ГМТ) ]
Сложность: 2
Классы: 8,9

Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что  AM = AN.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .