Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 5304]
Известно, что точка, симметричная центру вписанной окружности
треугольника
ABC относительно стороны
BC , лежит на описанной
окружности этого треугольника. Найдите угол
A .
Через точку пересечения медиан треугольника ABC проходит прямая, пересекающая стороны AB и AC. Расстояния от вершин B и C до этой прямой равны b и c соответственно. Найдите расстояние от вершины A до этой прямой.
Основания трапеции равны 3 см и 5 см. Одна из диагоналей трапеции равна 8 см,
угол между диагоналями равен
60
o . Найдите периметр трапеции.
Точки
P ,
Q ,
R и
S – середины сторон соответственно
AB ,
BC ,
CD и
DA выпуклого четырёхугольника
ABCD ,
M – точка внутри этого четырёхугольника, причём
APMS –
параллелограмм. Докажите, что
CRMQ – тоже параллелограмм.
Точка D взята на медиане BM треугольника ABC. Через точку D проведена прямая, параллельная стороне AB, а через точку C – прямая, параллельная медиане BM. Две проведённые прямые пересекаются в точке E. Докажите, что BE = AD.
Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 5304]