ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На бесконечной шахматной доске расставлены пешки через три поля на четвёртое, так что они образуют квадратную сетку.
Докажите, что шахматный конь не может обойти все свободные поля, побывав на каждом поле по одному разу.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 241]      



Задача 57705

Тема:   [ Неравенства с векторами ]
Сложность: 4
Классы: 9

Дано восемь вещественных чисел a, b, c, d, e, f, g, h. Докажите, что хотя бы одно из шести чисел ac + bd, ae + bf, ag + bh, ce + df, cg + dh, eg + fh неотрицательно.
Прислать комментарий     Решение


Задача 57711

Темы:   [ Свойства суммы, разности векторов и произведения вектора на число ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10

Внутри треугольника ABC взята точка O. Докажите, что

SBOC . $\displaystyle \overrightarrow{OA}$ + SAOC . $\displaystyle \overrightarrow{OB}$ + SAOB . $\displaystyle \overrightarrow{OC}$ = $\displaystyle \overrightarrow{0}$.


Прислать комментарий     Решение

Задача 57715

Тема:   [ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 4
Классы: 9

Четырехугольник ABCD вписанный. Пусть Ha — ортоцентр треугольника BCD, Ma — середина отрезка AHa; точки Mb, Mc и Md определяются аналогично. Докажите, что точки Ma, Mb, Mc и Md совпадают.
Прислать комментарий     Решение


Задача 57733

Тема:   [ Псевдоскалярное произведение ]
Сложность: 4
Классы: 8,9

Три бегуна A, B и C бегут по параллельным дорожкам с постоянными скоростями. В начальный момент площадь треугольника ABC равна 2, через 5 с равна 3. Чему может быть она равна еще через 5 с?
Прислать комментарий     Решение


Задача 57734

Тема:   [ Псевдоскалярное произведение ]
Сложность: 4
Классы: 8,9

По трем прямолинейным дорогам с постоянными скоростями идут три пешехода. В начальный момент времени они не находились на одной прямой. Докажите, что они могут оказаться на одной прямой не более двух раз.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .