ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 238]      



Задача 78504

Темы:   [ Неравенства с векторами ]
[ Наибольшая или наименьшая длина ]
[ Правильные многоугольники ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4-
Классы: 9,10,11

Из центра правильного 25-угольника проведены векторы во все его вершины.
Как надо выбрать несколько векторов из этих 25, чтобы их сумма имела наибольшую длину?

Прислать комментарий     Решение

Задача 116175

Темы:   [ Векторы помогают решить задачу ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4-
Классы: 9,10,11

Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.

Прислать комментарий     Решение

Задача 55376

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Теорема о группировке масс ]
Сложность: 4
Классы: 8,9

Точки K , N , L , M расположены соответственно на сторонах AB , BC , CD и AD выпуклого четырёхугольника ABCD , причём = = α , = = β . Докажите, что точка пересечения P отрезков KL и MN делит их в тех же отношениях, т.е. = α , = β .
Прислать комментарий     Решение


Задача 55380

Темы:   [ Векторы ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Из произвольной точки M внутри равностороннего треугольника опущены перпендикуляры MK1, MK2, MK3 на его стороны. Докажите, что

$\displaystyle \overrightarrow{MK_{1}} $ + $\displaystyle \overrightarrow{MK_{2}} $ + $\displaystyle \overrightarrow{MK_{3}} $ = $\displaystyle {\textstyle\frac{3}{2}}$ . $\displaystyle \overrightarrow{MO}$,

где O — центр треугольника.

Прислать комментарий     Решение


Задача 57686

Темы:   [ Векторы сторон многоугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9,10

Пусть E и F — середины сторон AB и CD четырехугольника ABCD, K, L, M и N — середины отрезков AF, CE, BF и DE. Докажите, что KLMN — параллелограмм.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 238]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .