Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 420]
|
|
|
Сложность: 4 Классы: 10,11
|
На плоскости расположено несколько прямых и точек. Доказать, что на плоскости
найдётся точка
A, не совпадающая ни с одной из данных точек, расстояние от
которой до любой из данных точек больше расстояния от неё до любой из данных
прямых.
|
|
|
Сложность: 4 Классы: 8,9,10
|
Последовательность чисел x1, x2, ... такова, что x1 = ½ и
для всякого натурального k.
Найдите целую часть суммы 
|
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости расположено 20 точек, никакие три из которых не лежат на одной
прямой, из них 10 синих и 10 красных.
Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.
|
|
|
Сложность: 4 Классы: 7,8,9
|
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда x1 рационально.
б) Сколько существует значений x1, для которых эта последовательность – периодическая с периодом T (для каждого T = 2, 3, ...)?
|
|
|
Сложность: 4 Классы: 10,11
|
Дан многочлен P(x) с действительными коэффициентами. Бесконечная
последовательность различных натуральных чисел a1, a2, a3, ... такова, что
P(a1) = 0, P(a2) = a1, P(a3) = a2, и т.д. Какую степень может иметь P(x)?
Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 420]