ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи? Рассматривается функция y = f (x), определённая на всём множестве действительных чисел и удовлетворяющая для некоторого числа k ≠ 0 соотношению f (x + k) . (1 − f (x)) = 1 + f (x). Доказать, что f (x) — периодическая функция. |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]
Докажите, что расстояние между любыми двумя точками, взятыми на сторонах треугольника, не больше наибольшей из его сторон.
Пусть a, b, c — стороны произвольного треугольника. Докажите, что a2 + b2 + c2 < 2(ab + bc + ac)
Пусть h1 и h2 — высоты треугольника, r — радиус
вписанной окружности. Докажите, что
Проведите через вершину A остроугольного треугольника ABC прямую так, чтобы она не пересекала сторону BC и чтобы сумма расстояний до неё от вершин B и C была наибольшей.
Докажите,что площадь любого четырёхугольника ABCD не
превосходит
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке