Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи?

Вниз   Решение


Рассматривается функция y = f (x), определённая на всём множестве действительных чисел и удовлетворяющая для некоторого числа k ≠ 0 соотношению f (x + k) . (1 − f (x)) = 1 + f (x). Доказать, что f (x) — периодическая функция.

Вверх   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]      



Задача 55155

Темы:   [ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Неравенство треугольника ]
Сложность: 4-
Классы: 8,9

Докажите, что расстояние между любыми двумя точками, взятыми на сторонах треугольника, не больше наибольшей из его сторон.

Прислать комментарий     Решение


Задача 55194

Темы:   [ Неравенства с медианами ]
[ Неравенство треугольника ]
Сложность: 4-
Классы: 8,9

Пусть a, b, c — стороны произвольного треугольника. Докажите, что a2 + b2 + c2 < 2(ab + bc + ac)

Прислать комментарий     Решение


Задача 55211

Темы:   [ Неравенства с высотами ]
[ Неравенство треугольника ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9

Пусть h1 и h2 — высоты треугольника, r — радиус вписанной окружности. Докажите, что $ {\frac{1}{2r}}$ < $ {\frac{1}{h_{1}}}$ + $ {\frac{1}{h_{2}}}$ < $ {\frac{1}{r}}$.

Прислать комментарий     Решение


Задача 55222

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Средняя линия трапеции ]
Сложность: 4-
Классы: 8,9

Проведите через вершину A остроугольного треугольника ABC прямую так, чтобы она не пересекала сторону BC и чтобы сумма расстояний до неё от вершин B и C была наибольшей.

Прислать комментарий     Решение


Задача 55160

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите,что площадь любого четырёхугольника ABCD не превосходит $ {\frac{1}{2}}$(AB . BC + AD . DC).

Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .