ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Десять человек захотели основать клуб. Для этого им необходимо собрать определённую сумму вступительных взносов. Если бы организаторов было на пять человек больше, то каждый из них должен был бы внести на 100 долларов меньше. Сколько денег внёс каждый?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1284]      



Задача 56593

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 2
Классы: 8,9

На окружности взяты точки A, B, C и D. Прямые AB и CD пересекаются в точке M. Докажите, что  AC . AD/AM = BC . BD/BM.
Прислать комментарий     Решение


Задача 56633

Тема:   [ Вписанный угол (прочее) ]
Сложность: 2
Классы: 8,9

В треугольнике ABC проведена высота AHO — центр описанной окружности. Докажите, что  $ \angle$OAH = |$ \angle$B - $ \angle$C|.
Прислать комментарий     Решение


Задача 52566

Темы:   [ Вписанный угол равен половине центрального ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 2+
Классы: 8,9

Хорда AB делит окружность на две дуги, из которых меньшая равна 130o, а большая делится хордой AC в отношении 31:15, считая от точки A. Найдите угол BAC.

Прислать комментарий     Решение


Задача 52581

Темы:   [ Угол между касательной и хордой ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 2+
Классы: 8,9

Через конец хорды, делящей окружность в отношении 3:5, проведена касательная. Найдите острый угол между хордой и касательной.

Прислать комментарий     Решение


Задача 56539

Темы:   [ Вписанный угол (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 7,8,9

Центр вписанной окружности треугольника ABC симметричен центру описанной окружности относительно стороны AB. Найдите углы треугольника ABC.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1284]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .