|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Окружности S1 и S2 пересекаются в точках A и B, причем касательные к S1 в этих точках являются радиусами S2. На внутренней дуге S1 взята точка C и соединена с точками A и B прямыми. Докажите, что вторые точки пересечения этих прямых с S2 являются концами одного диаметра. |
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 403]
Найдите геометрическое место точек, из которых данный отрезок виден: а) под острым углом; б) под тупым углом.
В окружности радиуса R проведены хорда AB и диаметр AC. Хорда PQ, перпендикулярная диаметру AC, пересекает хорду AB в точке M. Известно, что AB = a, PM : MQ = 3. Найдите AM.
В окружность с центром O вписана трапеция ABCD, в которой AD || BC, AD = 7, BC = 3, угол BCD равен 120o. Хорда BM окружности пересекает отрезок AD в точке N, причём ND = 2. Найдите площадь треугольника BOM.
В окружность с центром O вписана трапеция ABCD, в которой AB || DC, AB = 5, DC = 1, угол ABC равен 60o. Точка K лежит на отрезке AB, причём AK = 2. Прямая CK пересекает окружность в точке F, отличной от C. Найдите площадь треугольника OFC.
Точки C и D лежат на окружности с диаметром AB и отличны от A и B. Прямые AC и BD пересекаются в точке P, а прямые AD и BC — в точке Q. Докажите, что AB перпендикулярно PQ.
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 403] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|