|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Множество Кантора. Отрезок числовой оси от 0 до 1 покрашен в зеленый цвет. Затем его средняя часть — интервал (1/3;2/3) перекрашивается в красный цвет, потом средняя часть каждого из оставшихся зелеными отрезков тоже перекрашивается в красный цвет, с оставшимися зелеными отрезками проделывается та же операция и так до бесконечности. Точки, оставшиеся зелеными, образуют множество Кантора. а) Найдите сумму длин красных интервалов. б) Докажите, что число 1/4 останется окрашенным в зеленый цвет. в) Из суммы Через точку A общей хорды BC пересекающихся окружностей проведена прямая, пересекающая окружности в таких точках D и E соответственно, что прямая BD касается одной окружности, а прямая BE – другой. Продолжение хорды CD одной окружности пересекает другую окружность в точке F. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 241]
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 241] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|