ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник со сторонами a, b и c, причём a ≥ b ≥ c; x, y и z – углы некоторого другого треугольника. Докажите, что bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²). а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два
числа x и y, что 0 ≤ Дана функция Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет). Отличник Поликарп купил общую тетрадь объёмом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Двоечник Колька вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. В ответе у Кольки получилось 2002. Не ошибся ли он? По кругу написано семь натуральных чисел. Докажите, что найдутся два соседних числа, сумма которых чётна. Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы? Найти количество нечётных чисел в n-й строке треугольника Паскаля. В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать? Найдите наибольшее значение выражения
x При каких значениях n все коэффициенты в разложении бинома Ньютона (a + b)n нечётны? Многоугольник, описанный около окружности радиуса r,
разрезан на треугольники (произвольным образом). Докажите, что сумма
радиусов вписанных окружностей этих треугольников больше r.
Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить? |
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
Клетки таблицы 200×200 окрашены в чёрный и белый цвета так, что чёрных клеток на 404 больше, чем белых.
В каждую клетку квадратной таблицы размера (2n – 1)×(2n – 1) ставится одно из чисел 1 или – 1. Расстановку чисел назовём удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок.
На n карточках, выложенных по окружности, записаны числа, каждое из которых
Пусть a – заданное вещественное число, n – натуральное число, n > 1.
Боковая поверхность прямоугольного параллелепипеда с основанием a×b и высотой c (a, b и c – натуральные числа) оклеена по клеточкам без наложений и пропусков прямоугольниками со сторонами, параллельными рёбрам параллелепипеда, каждый из которых состоит из чётного числа единичных квадратов. При этом разрешается перегибать прямоугольники через боковые ребра параллелепипеда. Докажите, что если c нечётно, то число способов оклейки чётно.
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке