ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сфере, радиус которой равен 2, расположены три окружности радиуса 1, каждая из которых касается двух других. Найдите радиус окружности меньшей, чем данная, которая также расположена на данной сфере и касается каждой из данных окружностей.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 96]      



Задача 55125

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

Автор: Золотых А.

Каждая сторона треугольника разделена на три равные части. Точки деления служат вершинами двух треугольников, пересечение которых – шестиугольник. Найдите площадь этого шестиугольника, если площадь данного треугольника равна S.

Прислать комментарий     Решение

Задача 53271

Темы:   [ Отношения площадей ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на сторонах AB и AC выбраны соответственно точки B1 и C1, причём AB1 : AB = 1 : 3 и AC1 : AC = 1 : 2. Через точки A, B1 и C1 проведена окружность. Через точку B1 проведена прямая, пересекающая отрезок AC1 в точке D, а окружность — в точке E. Найдите площадь треугольника B1C1E, если AC1 = 4, AD = 1, DE = 2, а площадь треугольника ABC равна 12.

Прислать комментарий     Решение


Задача 53272

Темы:   [ Отношения площадей ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на сторонах AB и BC выбраны соответственно точки A1 и C1, причём A1B : AB = 1 : 2 и BC1 : BC = 1 : 4. Через точки A1, B и C1 проведена окружность. Через точку A1 проведена прямая, пересекающая отрезок BC1 в точке D, а окружность в точке E. Найдите площадь треугольника A1C1E, если BC1 = 6, BD = 2, DE = 3, а площадь треугольника ABC равна 32.

Прислать комментарий     Решение


Задача 64916

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теоремы Чевы и Менелая ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 9,10

В выпуклом четырёхугольнике ABCD  O – точка пересечения диагоналей, а M – середина стороны BC. Прямые MO и AD пересекаются в точке E. Докажите, что  AE : ED = SABO : SCDO.

Прислать комментарий     Решение

Задача 110949

Темы:   [ Отношение объемов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 8,9

Вершина S пирамиды SABC находится на расстоянии 4 от центра сферы радиуса 1, которая проходит через точки A , B и C и пересекает ребра SA , SB , SC соответственно в точках A1 , B1 , C1 . Отношение длин отрезков B1C1 и BC равно , отношение площадей треугольников SA1B1 и SAB равно , а отношение объёмов пирамид SA1B1C1 и SABC равно . Найдите длины отрезков SA1 , SB1 , SC1 .
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .