ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 1006]      



Задача 97919

Темы:   [ Числовые таблицы и их свойства ]
[ Правило произведения ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Анджанс А.

Клетки шахматной доски 8×8 как-то занумерованы числами от 1 до 32, причём каждое число использовано дважды. Докажите, что можно так выбрать 32 клетки, занумерованные разными числами, что на каждой вертикали и на каждой горизонтали найдётся хотя бы по одной выбранной клетке.

Прислать комментарий     Решение

Задача 97963

Темы:   [ Шахматная раскраска ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4
Классы: 7,8,9

На бесконечной шахматной доске расставлены пешки через три поля на четвёртое, так что они образуют квадратную сетку.
Докажите, что шахматный конь не может обойти все свободные поля, побывав на каждом поле по одному разу.

Прислать комментарий     Решение

Задача 97994

Темы:   [ Обход графов ]
[ Классическая комбинаторика (прочее) ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 9,10

В стране 1988 городов и 4000 дорог.
Докажите, что можно указать кольцевой маршрут, проходящий не более, чем через 20 городов (каждая дорога соединяет два города).

Прислать комментарий     Решение

Задача 98528

Темы:   [ Числовые таблицы и их свойства ]
[ Раскладки и разбиения ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
[ Процессы и операции ]
Сложность: 4
Классы: 10,11

Даны две таблицы A и B, в каждой m строк и n столбцов. В каждой клетке каждой таблицы записано одно из чисел 0 или 1, причём в строках таблиц числа не убывают (при движении по строке слева направо), и в столбцах таблиц числа не убывают (при движении по столбцу сверху вниз). Известно, что при любом k от 1 до m сумма чисел в верхних k строках таблицы A не меньше суммы чисел в верхних k строках таблицы B. Известно также, что всего в таблице A столько же единиц, сколько в таблице B. Докажите, что при любом l от 1 до n сумма чисел в левых l столбцах таблицы A не больше суммы чисел в левых l столбцах таблицы B.

Прислать комментарий     Решение

Задача 98596

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Внутренность и внешность. Лемма Жордана ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

а) Электрическая схема имеет вид решетки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от каждого узла к любому другому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 5×5 (всего 36 узлов).

Прислать комментарий     Решение

Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .