ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



Задача 65803

Темы:   [ Вписанные и описанные окружности ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 5-
Классы: 9,10,11

В треугольнике ABC  O, M, N – центр описанной окружности, центр тяжести и точка Нагеля соответственно.
Докажите, что угол MON прямой тогда и только тогда, когда один из углов треугольника равен 60°.
Прислать комментарий     Решение


Задача 64575

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 7,8

Два одинаковых прямоугольных треугольника из бумаги удалось положить один на другой так, как показано на рисунке (при этом вершина прямого угла одного попала на сторону другого). Докажите, что заштрихованный треугольник равносторонний.

Прислать комментарий     Решение

Задача 115765

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9,10,11

Треугольник разрезан на несколько (не менее двух) треугольников. Один из них равнобедренный (не равносторонний), а остальные – равносторонние. Найдите углы исходного треугольника.

Прислать комментарий     Решение

Задача 53391

Темы:   [ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 8,9

Один из углов треугольника равен 120°. Докажите, что треугольник, образованный основаниями биссектрис данного, прямоугольный.

Прислать комментарий     Решение

Задача 55064

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD известно, что  AB = 4,  AD = 6.  Биссектриса угла BAD пересекает сторону BC в точке M, при этом  AM = 4.
Найдите площадь четырёхугольника AMCD.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .