Страница:
<< 19 20 21 22 23 24
25 >> [Всего задач: 125]
|
|
Сложность: 4- Классы: 8,9,10
|
Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ, rx = rz = r, а ry > r. Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.
|
|
Сложность: 4 Классы: 8,9,10
|
Среди всех треугольников, вписанных в данную окружность, найдите тот,
у которого максимальна сумма квадратов длин сторон.
На сторонах
AB ,
BC и
AC треугольника
ABC взяты
точки
C' ,
A' и
B' соответственно. Докажите, что
площадь треугольника
A'B'C' равна
,
где
R – радиус описанной окружности треугольника
ABC .
|
|
Сложность: 4 Классы: 9,10,11
|
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.
|
|
Сложность: 4 Классы: 8,9,10
|
К двум непересекающимся окружностям ω1 и ω2 проведены три общие касательные – две внешние, a и b, и одна внутренняя, c. Прямые a, b и c касаются окружности ω1 в точках A1, B1 и C1 соответственно, а окружности ω2 – в точках A2, B2 и C2 соответственно. Докажите, что отношение площадей треугольников A1B1C1 и A2B2C2 равно отношению радиусов окружностей ω1 и ω2.
Страница:
<< 19 20 21 22 23 24
25 >> [Всего задач: 125]