Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 181]
|
|
Сложность: 4- Классы: 9,10,11
|
В равнобедренном треугольнике ABC с основанием BC
угол при вершине A равен 80°. Внутри треугольника ABC
взята точка M так, что
∠MBC = 30° и ∠MCB = 10°. Найдите величину угла AMC.
|
|
Сложность: 4- Классы: 8,9,10
|
Правильный шестиугольник ABCDEF вписан в окружность. Точки P и Q выбраны на касательных, проведённых к этой окружности в точках A и D соответственно, так, что прямая PQ касается меньшей дуги EF этой окружности. Найдите угол между прямыми PB и QC.
Правильный (2n+1)-угольник разбили диагоналями на 2n – 1 треугольник. Докажите, что среди них по крайней мере три равнобедренных.
На двух сторонах AB и BC правильного 2n-угольника взято по
точке K и N, причём угол KEN, где E – вершина, противоположная B, равен 180°/2n. Докажите, что NE – биссектриса угла KNC.
Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 181]