ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]      



Задача 54276

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Удвоение медианы ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

Диагонали трапеции равны 3 и 5, а отрезок, соединяющий середины оснований, равен 2. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 65362

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Удвоение медианы ]
[ Ромбы. Признаки и свойства ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9,10,11

В треугольнике ABC  AB = BC,  ∠B = 20°.  Точка M на основании AC такова, что  AM : MC = 1 : 2,  точка H – проекция C на BM. Найдите угол AHB.

Прислать комментарий     Решение

Задача 111265

Темы:   [ Неравенства с площадями ]
[ Удвоение медианы ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Средняя линия трапеции ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10

В треугольнике ABC точка D – середина стороны AB . Можно ли так расположить точки E и F на сторонах AC и BC соответственно, чтобы площадь треугольника DEF оказалась больше суммы площадей треугольников AED и BFD ?
Прислать комментарий     Решение


Задача 111879

Темы:   [ Ортоцентр и ортотреугольник ]
[ Удвоение медианы ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Центральная симметрия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4+
Классы: 9,10

В неравнобедренном треугольнике ABC точки H и M – точки пересечения высот и медиан соответственно. Через вершины A, B и C проведены прямые, перпендикулярные прямым AM, BM, CM соответственно. Докажите, что точка пересечения медиан треугольника, образованного проведёнными прямыми, лежит на прямой MH.

Прислать комментарий     Решение

Задача 56453

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Две пары подобных треугольников ]
[ Удвоение медианы ]
Сложность: 3
Классы: 8,9

Докажите, что медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении  2 : 1,  считая от вершины.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .