Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Дан трехгранный угол с вершиной O. Можно ли найти такое плоское сечение ABC, чтобы углы OAB, OBA, OBC, OCB, OAC, OCA были острыми?

Вниз   Решение


В кубе ABCDABCD₁, ребро которого равно 4, точки E и F ─ середины рёбер AB и BC₁ соответственно, а точка P расположена на ребре CD так, что PD = 3PC. Найдите

1) расстояние от точки F до прямой AP;

2) расстояние между прямыми EF и AP;

3) расстояние от точки A₁ до плоскости треугольника EFP.

ВверхВниз   Решение


Даны два натуральных числа m и n. Выписываются все различные делители числа m – числа a, b, ..., k – и все различные делители числа n – числа s, t, ..., z. (Само число и 1 тоже включаются в число делителей.) Оказалось, что  a + b + ... + k = s + t + ... + z  и  1/a + 1/b + ... + 1/k = 1/s + 1/t + ... + 1/z.
Доказать, что  m = n.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1; прямые B1C1, BB1 и CC1 пересекают прямую AA1 в точках M, P и Q соответственно. Докажите, что:
а) A1M/MA = (A1P/PA) + (A1Q/QA);
б) если P = Q, то MC1 : MB1 = (BC1/AB) : (CB1/AC).

ВверхВниз   Решение


Две фирмы по очереди нанимают программистов, среди которых есть 11 гениев. Первого программиста каждая фирма выбирает произвольно, а каждый следующий должен быть знаком с кем-то из ранее нанятых данной фирмой. Если фирма не может нанять программиста по этим правилам, она прекращает приём, а другая может продолжать. Список программистов и их знакомств заранее известен, включая информацию о том, кто гении. Могут ли знакомства быть устроены так, что фирма, вступающая в игру второй, сможет нанять 10 гениев, как бы ни действовала первая фирма?

ВверхВниз   Решение


а) Докажите, что момент инерции относительно центра масс системы точек с единичными массами равен $ {\frac{1}{n}}$$ \sum\limits_{i<j}^{}$aij2, где n — число точек, aij — расстояние между точками с номерами i и j.
б) Докажите, что момент инерции относительно центра масс системы точек с массами m1,..., mn, равен $ {\frac{1}{m}}$$ \sum\limits_{i<j}^{}$mimjaij2, где m = m1 +...+ mn, aij — расстояние между точками с номерами i и j.

ВверхВниз   Решение


Вписанная окружность треугольника ABC  (AB > BC)  касается сторон AB и AC в точках P и Q соответственно, RS – средняя линия, параллельная стороне AB, T – точка пересечения прямых PQ и RS. Докажите, что точка T лежит на биссектрисе угла B треугольника ABC.

Вверх   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 159]      



Задача 115331

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательная окружность ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 8,9

Вписанная окружность треугольника ABC имеет центр I и касается сторон AB, BC, CA в точках C1, A1, B1 соответственно. Обозначим через L основание биссектрисы угла B, а через K – точку пересечения прямых B1I и A1C1. Докажите, что  KL || BB1.

Прислать комментарий     Решение

Задача 115671

Темы:   [ Геометрические неравенства (прочее) ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Трапеция с основаниями a и b описана около окружности радиуса R . Докажите, что ab 4R2 .
Прислать комментарий     Решение


Задача 109014

Темы:   [ Наибольшая или наименьшая длина ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Построения с помощью вычислений ]
Сложность: 5
Классы: 8,9,10

Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром.
Прислать комментарий     Решение


Задача 116364

Темы:   [ Две касательные, проведенные из одной точки ]
[ Признаки и свойства касательной ]
[ Площадь трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9,10

Окружность, вписанная в прямоугольную трапецию, делит её большую боковую сторону на отрезки, равные 1 и 4. Найдите площадь трапеции.
Прислать комментарий     Решение


Задача 116365

Темы:   [ Две касательные, проведенные из одной точки ]
[ Признаки и свойства касательной ]
[ Площадь трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9,10

Окружность, вписанная в равнобедренную трапецию, делит её боковую сторону на отрезки, равные 4 и 9. Найдите площадь трапеции.
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .