Страница:
<< 103 104 105 106
107 108 109 >> [Всего задач: 563]
|
|
Сложность: 5 Классы: 8,9,10
|
Дан треугольник ABC и точки P и
Q, лежащие на его описанной окружности. Точку P отразили
относительно прямой BC и получили точку P_a. Точку
пересечения прямых QP_a и BC обозначим A'. Точки B'
и C' строятся аналогично. Докажите, что точки A', B' и
C' лежат на одной прямой.
Дан острый угол
ABC . На стороне
BC отложены отрезки
BD= 4 см
и
BE= 14 см. Найти на стороне
BA такие две точки
M и
N ,
чтобы
MN=3 см и
DMN= MNE .
Прямые, содержащие медианы треугольника ABC, вторично пересекают его описанную окружность в точках A1, B1, C1. Прямые, проходящие через A, B, C и параллельные противоположным сторонам, пересекают ее же в точках A2, B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.
Точки K и P симметричны основанию H высоты BH треугольника ABC относительно его сторон AB и BC.
Докажите, что точки пересечения отрезка KP со сторонами AB и BC (или их продолжениями) – основания высот треугольника ABC.
В треугольнике ABC ∠A = 60°. Серединный перпендикуляр к отрезку AB пересекает прямую AC в точке C1. Серединный перпендикуляр к отрезку AC пересекает прямую AB в точке B1. Докажите, что прямая B1C1 касается вписанной окружности треугольника ABC.
Страница:
<< 103 104 105 106
107 108 109 >> [Всего задач: 563]