Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 96]
|
|
Сложность: 4- Классы: 9,10
|
Пусть H – ортоцентр остроугольного треугольника ABC. На касательной в точке H к описанной окружности ωA треугольника BHC взята точка XA, что AH = AXA и H ≠ XA. Аналогично определены точки XB и XC. Докажите, что треугольник XAXBXC и ортотреугольник треугольника ABC подобны.
|
|
Сложность: 4- Классы: 10,11
|
Два прямоугольника положены на плоскость так, что их границы имеют восемь точек
пересечения. Эти точки соединены через одну. Доказать, что площадь полученного
четырёхугольника не изменится при поступательном перемещении одного из
прямоугольников.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Докажите, что любой квадратный трёхчлен можно представить в виде
суммы двух квадратных трёхчленов с нулевыми дискриминантами.
|
|
Сложность: 4- Классы: 10,11
|
Разрезать отрезок [–1, 1] на чёрные и белые отрезки так, чтобы интегралы от любой а) линейной функции; б) квадратного трёхчлена по белым и чёрным отрезкам были равны.
С помощью циркуля и линейки постройте четырёхугольник ABCD
по четырём углам и сторонам AB = a и CD = b.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 96]