Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 289]
Пусть
la ,
lb и
lc – длины биссектрис углов
A ,
B и
C треугольника
ABC , а
ma ,
mb и
mc – длины соответствующих медиан. Докажите, что
+ + >1
|
|
Сложность: 5 Классы: 10,11
|
На поверхности сферической планеты расположены четыре материка, отделённые друг от друга океаном. Назовем точку океана особой, если для нее найдутся не менее трёх ближайших (находящихся от нее на равных расстояниях) точек суши, причём все на разных материках. Какое наибольшее число особых точек может быть на
этой планете?
Рассматривается выпуклый восьмиугольник. С помощью диагонали от него можно
отрезать четырёхугольник, причём это можно сделать восемью способами. Может ли случиться, что среди этих восьми четырёхугольников имеется
а) четыре,
б) пять
таких, в которые можно вписать окружность?
|
|
Сложность: 3- Классы: 10,11
|
Длина ребра правильного тетраэдра равна a. Через одну из вершин тетраэдра проведено треугольное сечение.
Докажите, что периметр P этого треугольника удовлетворяет неравенству P > 2a.
|
|
Сложность: 3 Классы: 9,10,11
|
В тетраэдре ABCD плоские углы BAD и BCD – тупые.
Сравните длины ребер AC и BD.
Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 289]