ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть ma и mb — медианы, проведенные к сторонам a и b треугольника со сторонами a, b, c. Докажите, что m2a + m2b > $ {\frac{9}{8}}$c2.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 95]      



Задача 54846

Тема:   [ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 8,9

На боковых сторонах AD и BC трапеции ABCD взяты точки P и Q соответственно, причём AP:PD = 3:2 . Отрезок PQ разбивает трапецию на части, одна из которых по площади вдвое больше другой. Найдите отношение CQ:QB , если AB:CD = 3:2 .
Прислать комментарий     Решение


Задача 78278

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Основные свойства центра масс ]
[ Аналитический метод в геометрии ]
Сложность: 4
Классы: 8,9,10

На сторонах AB, BC, CA правильного треугольника ABC найти такие точки X, Y, Z (соответственно), чтобы площадь треугольника, образованного прямыми CX, BZ, AY, была вчетверо меньше площади треугольника ABC и чтобы было выполнено условие: $$\frac{AX}{XB}=\frac{BY}{YC}=\frac{CZ}{ZA}.$$
Прислать комментарий     Решение


Задача 108170

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4
Классы: 8,9

На сторонах AB , BC и AC треугольника ABC взяты точки C' , A' и B' соответственно. Докажите, что площадь треугольника A'B'C' равна

,

где R – радиус описанной окружности треугольника ABC .
Прислать комментарий     Решение

Задача 111575

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

В треугольнике ABC точка D – середина стороны AB . Можно ли так расположить точки E и F на сторонах AC и BC соответственно, чтобы площадь треугольника DEF оказалась больше суммы площадей треугольников AED и BFD ?
Прислать комментарий     Решение


Задача 98151

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Теоремы Чевы и Менелая ]
[ Теорема синусов ]
[ Аналитический метод в геометрии ]
[ Трапеции (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Дан угол с вершиной O и внутри него точка A. Рассмотрим такие точки M, N на разных сторонах данного угла, что углы MAO и OAN равны.
Докажите, что все прямые MN проходят через одну точку (или параллельны).

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 95]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .