Страница:
<< 125 126 127 128
129 130 131 >> [Всего задач: 829]
В равнобедренном треугольнике ABC (AC = BC) точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые
OD и BI перпендикулярны. Докажите, что прямые ID и AC
параллельны.
|
|
Сложность: 4- Классы: 7,8,9
|
Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник
A1B1C1 не может быть правильным.
Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию,
боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?
На плоскости дана окружность ω, точка A, лежащая внутри ω, и точка B, отличная от A. Рассматриваются всевозможные хорды XY, проходящие через точку A. Докажите, что центры описанных окружностей треугольников BXY лежат на одной прямой.
В четырёхугольнике ABCD на сторонах BC и AD взяты точки R и T соответственно. Отрезки BT и AR пересекаются в точке P, отрезки CT и DR – в точке S. Оказалось, что PRST – параллелограмм. Докажите, что AB || CD.
Страница:
<< 125 126 127 128
129 130 131 >> [Всего задач: 829]