Версия для печати
Убрать все задачи
Окружность $\omega_{1}$ проходит через центр $O$ окружности $\omega_{2}$ и пересекает ее в точках $A$ и $B$.
Окружность $\omega_{3}$ с центром в точке $A$ и радиусом $AB$ пересекает повторно окружности $\omega_{1}$ и $\omega_{2}$ в
точках $C$ и $D$ (отличных от $B$). Докажите, что точки $C$, $O$, $D$ лежат на одной прямой.

Решение
Окружность радиуса 4 вписана в равнобедренную трапецию, меньшее основание которой равно 4.
Найдите расстояние между точками, в которых окружность касается боковых сторон трапеции.

Решение