Страница:
<< 14 15 16 17 18 19
20 >> [Всего задач: 96]
|
|
Сложность: 4- Классы: 8,9,10
|
В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.
|
|
Сложность: 4 Классы: 9,10,11
|
Какое наибольшее конечное число корней может иметь уравнение
|x-a1|+..+|x-a50|=|x-b1|+..+|x-b50|,
где
a1 ,
a2 ,
a50
,
b1 ,
b2 ,
b50
–
различные числа?
|
|
Сложность: 4 Классы: 8,9,10
|
На доске выписано (n – 1)n выражений: x1 – x2, x1 – x3, ..., x1 – xn, x2 – x1, x2 – x3, ..., x2 – xn, ..., xn – xn–1, где n ≥ 3. Лёша записал в тетрадь все эти выражения, их суммы по два различных, по три различных и т. д. вплоть до суммы всех выражений. При этом Лёша во всех выписываемых суммах приводил подобные слагаемые (например, вместо (x1 – x2) +
(x2 – x3) Лёша запишет x1 – x3, а вместо (x1 – x2) + (x2 – x1) он запишет 0).
Сколько выражений Лёша записал в тетрадь ровно по одному разу?
|
|
Сложность: 4+ Классы: 9,10,11
|
На берегу круглого острова Гдетотам расположено 20 деревень, в каждой живёт по 20 борцов. Был проведён турнир, в котором каждый борец встретился со всеми борцами из всех других деревень. Деревня А считается сильнее деревни Б, если хотя бы k поединков между борцами из этих деревень заканчивается победой борца из деревни А. Выяснилось, что каждая деревня сильнее следующей за ней по часовой стрелке. Какое наибольшее значение может иметь k? (У всех борцов разная сила, и в поединке всегда побеждает сильнейший.)
|
|
Сложность: 5+ Классы: 8,9,10,11
|
В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
в) Могут ли длины отрезков равняться 4, 4 и 3?
Страница:
<< 14 15 16 17 18 19
20 >> [Всего задач: 96]