Страница:
<< 25 26 27 28 29 30
31 >> [Всего задач: 152]
В выпуклом четырёхугольнике ABCD углы B и D равны, CD = 4BC, а биссектриса угла A проходит через середину стороны CD.
Чему может быть равно отношение AD : AB?
|
|
Сложность: 4- Классы: 9,10
|
Дана равнобокая трапеция ABCD (AD || BC). На дуге AD (не содержащей точек B и C) описанной окружности этой трапеции произвольно выбрана точка M. Докажите, что основания перпендикуляров, опущенных из вершин A и D на отрезки BM и CM, лежат на одной окружности.
|
|
Сложность: 4 Классы: 8,9,10
|
Через точку пересечения высот остроугольного треугольника ABC
проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.
|
|
Сложность: 5- Классы: 9,10
|
Пусть A', B' и C' – точки касания вневписанных
окружностей с соответствующими сторонами треугольника ABC. Описанные окружности треугольников A'B'C, AB'C' и A'BC' пересекают второй раз описанную окружность треугольника ABC в точках C1, A1 и B1 соответственно. Докажите, что треугольник A1B1C1
подобен треугольнику, образованному точками касания вписанной окружности треугольника с его сторонами.
|
|
Сложность: 5 Классы: 9,10,11
|
Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
а) треугольник T1 был остроугольным?
б) в последовательности T1, T2, T3, ... встретился прямоугольный треугольник Tn (и таким образом треугольник Tn+1 не определён)?
в) треугольник T3 был подобен треугольнику T?
г) Для каждого натурального числа n выясните, сколько существует неподобных друг другу треугольников T, для которых треугольник Tn подобен треугольнику Т.
Страница:
<< 25 26 27 28 29 30
31 >> [Всего задач: 152]