ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Пастор А.

В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1443]      



Задача 102221

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC стороны AB и BC равны между собой, AC = 2, а $ \angle$ACB = 30o. Из вершины A к боковой стороне BC проведены биссектриса AE и медиана AD. Найдите площадь треугольника ADE.
Прислать комментарий     Решение


Задача 102339

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC даны длины сторон AB = 8, BC = 6 и биссектриса BD = 6. Найдите длину медианы AE.
Прислать комментарий     Решение


Задача 102340

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC даны длины сторон AB = 4, BC = 6 и биссектриса BD = 3$ \sqrt{2}$. Найдите длину медианы CE.
Прислать комментарий     Решение


Задача 102367

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = 14, BC = 6, AC = 10. Биссектрисы BD и CE пересекаются в точке O. Найдите OD.
Прислать комментарий     Решение


Задача 102407

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC, площадь которого равна 2. На медианах AK, BL и CN треугольника ABC взяты соответственно точки P, Q и R так, что AP : PK = 1, BQ : QL = 1 : 2, CR : RN = 5 : 4. Найдите площадь треугольника PQR.

Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1443]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .