Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 1435]
Окружность касается двух сторон треугольника и двух его
медиан. Докажите, что этот треугольник равнобедренный.
С помощью циркуля и линейки постройте биссектрису данного
угла, вершина которого лежит вне чертежа.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ проведены высоты $AH_A$, $BH_B$, $CH_C$. Пусть $X$ – произвольная точка отрезка $CH_C$, а $P$ – точка пересечения окружностей с диаметрами $H_CX$ и $BC$, отличная от $H_C$. Прямые $CP$ и $AH_A$ пересекаются в точке $Q$, а прямые $XP$ и $AB$ – в точке $R$. Докажите, что точки $A$, $P$, $Q$, $R$, $H_B$ лежат на одной окружности.
В треугольнике
ABC биссектрисы углов при вершинах
A и
C пересекаются в точке
D.
Найдите радиус описанной около треугольника
ABC окружности, если радиус
окружности с центром в точке
O, описанной около треугольника
ADC, равен
R = 6, и
ACO = 30
o.
В окружность с центром в точке
O вписан треугольник
EGF, у которого угол
EFG
-- тупой. Вне окружности находится такая точка
L, что
LEF =
FEG,
LGF =
FGE. Найдите радиус описанной около треугольника
ELG окружности,
если площадь треугольника
EGO равна
81
и
OEG = 60
o.
Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 1435]