Страница:
<< 160 161 162 163 164 165 166 [Всего задач: 829]
|
|
Сложность: 4+ Классы: 8,9,10
|
В неравнобедренном остроугольном треугольнике ABC проведены высоты AA1 и CC1, H – точка пересечения высот, O – центр описанной окружности, B0 – середина стороны AC. Прямая BO пересекает сторону AC в точке P, а прямые BH и A1C1 пересекаются в точке Q. Докажите, что прямые HB0 и PQ параллельны.
|
|
Сложность: 5 Классы: 9,10,11
|
Дан остроугольный треугольник ABC. Пусть A' – точка, симметричная A относительно BC, OA – центр окружности, проходящей через A и середины отрезков A'B и A'C. Точки OB и OC определяются аналогично. Найдите отношение радиусов описанных окружностей треугольников
ABC и OAOBOC.
Две окружности с центрами O1 и O2 пересекаются в точках A и B. Биссектриса угла O1AO2 повторно пересекает окружности в точках C и D.
Докажите, что центр O описанной окружности треугольника CBD равноудалён от точек O1 и O2.
|
|
Сложность: 4 Классы: 9,10,11
|
Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда OA·OC = OB·OD.
Страница:
<< 160 161 162 163 164 165 166 [Всего задач: 829]