Страница:
<< 105 106 107 108
109 110 111 >> [Всего задач: 1221]
Концы N хорд разделили окружность на 2N дуг единичной длины.
Известно, что каждая из хорд делит окружность на две дуги чётной длины.
Докажите, что число N чётно.
|
|
Сложность: 3+ Классы: 8,9,10
|
Имеется 200 гирек массами 1, 2, ..., 200 грамм. Их разложили на две чаши весов по 100 гирек на каждую, и весы оказались в равновесии. На каждой гирьке записали,
сколько гирек на противоположной чаше легче неё. Докажите, что сумма чисел,
записанных на гирьках левой чаши, равна сумме чисел, записанных на гирьках правой чаши.
Вася написал верное утверждение:
"В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".
А Коля написал фразу:
"В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".
Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите значение выражения .
|
|
Сложность: 3+ Классы: 5,6,7
|
На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.
– Интересно, а сколько среди вас рыцарей? – спросил он.
– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.
– Хорошо. Скажи мне каждый: кто твои соседи? – спросил путешественник.
На этот вопрос все ответили одинаково.
– Данных недостаточно! – сказал путешественник.
– Но сегодня день моего рождения, не забывай об этом, – сказал один из гостей.
– Да, сегодня день его рождения! – сказал его сосед.
И путешественник смог узнать, сколько за столом рыцарей. Действительно, сколько же их?
Страница:
<< 105 106 107 108
109 110 111 >> [Всего задач: 1221]