Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 1354]
Найдите высоту прямоугольного треугольника, опущенную на
гипотенузу, если известно, что основание этой высоты делит
гипотенузу на отрезки, равные 1 и 4.
Высота равнобедренного треугольника, опущенная на
боковую сторону, разбивает её на отрезки, равные 2 и 1,
считая от вершины треугольника. Найдите основание
треугольника.
Дан равнобедренный прямоугольный треугольник ABC. Hа продолжениях катетов AB и AC за вершины B и C отложили равные отрезки BK и CL. E и F – точки пересечения отрезка KL и прямых, перпендикулярных KC и проходящих через точки B и A соответственно. БикЮ
Докажите, что EF = FL.
|
|
Сложность: 3 Классы: 8,9,10
|
Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что .
|
|
Сложность: 3 Классы: 9,10,11
|
Прямоугольник площади 14 делит сторону квадрата в отношении 1 к 3 (см. рис). Найдите площадь квадрата.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 1354]