Страница:
<< 70 71 72 73 74 75 76 [Всего задач: 378]
|
|
Сложность: 4 Классы: 10,11
|
В кубе ABCDA1B1C1D1, ребро которого равно 6, точки M и N – середины рёбер AB и B1C1 соответственно, а точка K расположена на ребре DC так, что
DK = 2KC. Найдите
а) расстояние от точки N до прямой AK;
б) расстояние между прямыми MN и AK;
в) расстояние от точки A1 до плоскости треугольника MNK.
|
|
Сложность: 4+ Классы: 10,11
|
Две плоскости, параллельные противоположным рёбрам
AB и
CD
тетраэдра
ABCD , делят ребро
BC на три равные части. Какая часть
объёма тетраэдра заключена между этими плоскостями?
|
|
Сложность: 10- Классы: 9,10,11
|
Какое наибольшее число точек можно разместить
a) на плоскости;
б)* в пространстве так, чтобы ни один из треугольников с вершинами в этих точках не был тупоугольным?
(Разумеется, в условии подразумевается, что никакие три точки не должны лежать
на одной прямой – без этого ограничения можно разместить сколько угодно
точек.)
Страница:
<< 70 71 72 73 74 75 76 [Всего задач: 378]