Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 965]
|
|
Сложность: 4- Классы: 9,10,11
|
Существуют ли такие значения a и b, при которых уравнение
х4 – 4х3 + 6х² + aх + b = 0 имеет четыре различных действительных корня?
|
|
Сложность: 4- Классы: 10,11
|
Даны многочлен P(x) и такие числа a1, a2, a3, b1, b2, b3, что a1a2a3 ≠ 0. Оказалось, что P(a1x + b1) + P(a2x + b2) = P(a3x + b3) для любого действительного x. Докажите, что P(x) имеет хотя бы один действительный корень.
|
|
Сложность: 4- Классы: 8,9,10
|
Даны три квадратных трёхчлена P(x), Q(x) и
R(x) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена R(x) в многочлен P(x) + Q(x) получаются равные значения. Аналогично при подстановке корней трёхчлена P(x) в многочлен Q(x) + R(x) получаются равные значения, а также при подстановке корней трёхчлена Q(x) в многочлен P(x) + R(x) получаются равные значения. Докажите, что три числа: сумма корней трёхчлена P(x), сумма корней трёхчлена Q(x) и сумма корней трёхчлена R(x) равны между собой.
|
|
Сложность: 4- Классы: 8,9,10
|
Найдите все такие натуральные k, что при каждом нечётном n > 100 число 20n + 13n делится на k.
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что при умножении многочлена (x + 1)n–1 на любой многочлен, отличный от нуля, получается многочлен, имеющий не менее n отличных от нуля коэффициентов.
Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 965]