ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1221]      



Задача 116714

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Замена переменных (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

На плоскости нарисовали кривые  y = cos x  и  x = 100 cos(100y)  и отметили все точки их пересечения, координаты которых положительны. Пусть a – сумма абсцисс, а b – сумма ординат этих точек. Найдите  a/b.

Прислать комментарий     Решение

Задача 116788

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 5,6

На клетки шахматной доски положили рисовые зёрнышки. Количества зёрнышек на каждых двух клетках, имеющих общую сторону, отличались ровно
на 1. При этом на одной из клеток доски лежало три зёрнышка, а на другой – 17 зёрнышек. Петух склевал все зёрнышки с одной из главных диагоналей доски, а курица – с другой. Сколько зёрен досталось петуху и сколько курице?

Прислать комментарий     Решение

Задача 116850

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

Могут ли все корни уравнений  x² – px + q = 0  и  x² – (p + 1)x + q = 0  оказаться целыми числами, если:
  а)  q > 0;
  б)  q < 0?

Прислать комментарий     Решение

Задача 116993

Темы:   [ Шахматная раскраска ]
[ Подсчет двумя способами ]
[ Степень вершины ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?

Прислать комментарий     Решение

Задача 117003

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Кооперативные алгоритмы ]
Сложность: 3+
Классы: 5,6,7

Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?

Прислать комментарий     Решение

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .