ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 829]      



Задача 116895

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Свойства симметрий и осей симметрии ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Точка M – середина основания AC остроугольного равнобедренного треугольника ABC. Точка N симметрична M относительно BC. Прямая, параллельная AC и проходящая через точку N, пересекает сторону AB в точке K. Найдите угол AKC.

Прислать комментарий     Решение

Задача 116903

Темы:   [ Ортоцентр и ортотреугольник ]
[ Отношения линейных элементов подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9,10

В остроугольном треугольнике ABC провели высоты AA1 и BB1, которые пересекаются в точке O. Затем провели высоту A1A2 треугольника OBA1 и высоту B1B2 треугольника OAB1. Докажите, что отрезок A2B2 параллелен стороне AB.

Прислать комментарий     Решение

Задача 66962

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3
Классы: 8,9,10

Через вершины треугольника $ABC$ проведены параллельные прямые $l_a$, $l_b$, $l_c$. Пусть прямая $a$ симметрична высоте $AH_a$ относительно $l_a$. Аналогично определяем $b$, $c$. Докажите, что $a$, $b$, $c$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 52459

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки подобия ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Дан угол с вершиной O и окружность, касающаяся его сторон в точках A и B. Из точки A параллельно OB проведён луч, пересекающий окружность в точке C. Прямая OC пересекает окружность в точке E. Прямые AE и OB пересекаются в точке K. Докажите, что  OK = KB.

Прислать комментарий     Решение


Задача 52655

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Средняя линия трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В равнобедренную трапецию вписана окружность. Расстояние от центра окружности до точки пересечения диагоналей трапеции относится к радиусу, как
3 : 5.  Найдите отношение периметра трапеции к длине вписанной окружности.

Прислать комментарий     Решение

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .