Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 1006]
Можно ли построить три дома, вырыть три колодца и соединить тропинками каждый дом с каждым колодцем так, чтобы тропинки не пересекались?
Докажите, что граф, имеющий 10 вершин, степень каждой из которых равна 5, – не плоский.
Можно ли составить решётку, изображённую на рисунке
а) из пяти ломаных длины 8?
б) из восьми ломаных длины 5?
(Длина стороны клетки равна 1.)
|
|
Сложность: 4- Классы: 8,9,10
|
Каждый из 102 учеников одной школы знаком не менее чем с 68 другими.
Докажите, что среди них найдутся четверо, имеющие одинаковое число знакомых.
Расстоянием между двумя произвольными вершинами дерева будем называть длину простого пути, соединяющего их. Удалённостью вершины дерева назовём сумму расстояний от неё до всех остальных вершин. Докажите, что в дереве, у которого есть две вершины с удалённостями, отличающимися на 1, нечётное число вершин.
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 1006]