Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Высота трапеции ABCD равна 7, основания AD и BC равны соответственно 8 и 6. Через точку E, лежащую на стороне CD, проведена прямая BE, которая делит диагональ AC в точке O в отношении  AO : OC = 3 : 2.  Найдите площадь треугольника OEC.

Вниз   Решение


Докажите, что для чисел Люка Ln (см. задачу 60585) выполнено соотношение  

ВверхВниз   Решение


Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

ВверхВниз   Решение


Дан треугольник ABC. Найдите внутри его точку O, для которой сумма длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше 120o.)

ВверхВниз   Решение


Круг разделен на 6 секторов и в них по часовой стрелке расставлены числа: 1, 0, 1, 0, 0, 0. Разрешается прибавить по единице к числам в любых двух соседних секторах. Можно ли такими операциями добиться того, чтобы все числа в секторах были одинаковыми?

ВверхВниз   Решение


В основании треугольной пирамиды NKLM лежит правильный треугольник KLM . Высота пирамиды, опущенная из вершины N , проходит через середину ребра LM . Известно, что KL = a , KN = b . Пирамиду пересекает плоскость β , параллельная рёбрам KN и LM . На каком расстоянии от вершины N должна находиться плоскость β , чтобы площадь сечения пирамиды этой плоскостью была наибольшей?

Вверх   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 830]      



Задача 35249

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 8,9,10

На плоскости даны 2004 точки. Запишем все попарные расстояния между ними.
Докажите, что среди записанных чисел не менее тридцати различных.

Прислать комментарий     Решение

Задача 37001

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теоремы Чевы и Менелая ]
[ Гомотетия помогает решить задачу ]
[ ГМТ - прямая или отрезок ]
Сложность: 3+
Классы: 9,10

Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении.

Прислать комментарий     Решение

Задача 52763

Темы:   [ Биссектриса угла ]
[ Теорема Пифагора (прямая и обратная) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

На плоскости дан угол величины 60°. Окружность касается одной стороны этого угла, пересекает другую сторону в точках A и B и пересекает биссектрису угла в точках C и D.  AB = CD = .  Найдите площадь круга, ограниченного этой окружностью.

Прислать комментарий     Решение

Задача 53565

Темы:   [ Биссектриса угла ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Биссектриса угла, смежного с углом C треугольника ABC, пересекает продолжение стороны AB за точку B в точке D, а биссектриса угла, смежного с углом A, пересекает продолжение BC за точку C в точке E. Известно, что  DC = CA = AE.  Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 53580

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На стороне CB треугольника ABC взята точка M, а на стороне CA – точка P. Известно, что  CP : CA = 2CM : CB.  Через точку M проведена прямая, параллельная CA, а через P – прямая параллельная AB. Докажите, что построенные прямые пересекаются на медиане CN.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 830]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .