Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 58]
|
|
Сложность: 4 Классы: 9,10,11
|
Из высот треугольника можно составить треугольник. Верно ли, что из его биссектрис также можно составить треугольник?
|
|
Сложность: 4+ Классы: 10,11
|
Даны треугольник XYZ и выпуклый шестиугольник ABCDEF. Стороны AB, CD и EF параллельны и равны соответственно сторонам XY, YZ и ZX. Докажите, что площадь треугольника с вершинами в серединах сторон BC, DE и FA не меньше площади треугольника XYZ.
|
|
Сложность: 5+ Классы: 8,9,10
|
Какую наименьшую ширину должна иметь бесконечная полоса бумаги,
из которой можно вырезать любой треугольник площадью 1?
В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки, равные 5 и 12. Найдите катеты треугольника.
К окружности радиуса 7 проведены две касательные из одной точки, удалённой от центра на расстояние, равное 25.
Найдите расстояние между точками касания.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 58]