Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

Вниз   Решение


В выпуклом четырёхугольнике ABCD точка L является серединой стороны BC, точка M является серединой AD, точка N является серединой стороны AB. Найдите отношение площади треугольника LMN к площади четырёхугольника ABCD.

ВверхВниз   Решение


На плоскости дано  n > 4  точек, никакие три из которых не лежат на одной прямой.
Докажите, что существует не менее    различных выпуклых четырёхугольников с вершинами в этих точках.

ВверхВниз   Решение


Решить в целых числах уравнение  x² + y² + z² = 4(xy + yz + zx).

ВверхВниз   Решение


На стороне острого угла KOM взята точка L между O и K. Окружность проходит через точки K и L и касается луча OM в точке M. На дуге LM, не содержащей точки K, взята точка N. Расстояния от точки N до прямых OM, OK и KM равны m, k и l соответственно. Найдите расстояние от точки N до прямой LM.

ВверхВниз   Решение


Из точки A, расположенной вне окружности, проведены две касательные AM и AN (M и N — точки касания) и секущая, пересекающая окружность в точках P и Q. Пусть L — середина PQ. Докажите, что $ \angle$MLA = $ \angle$NLA.

ВверхВниз   Решение


Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.

ВверхВниз   Решение


Автор: Фольклор

Две точки окружности соединили ломаной, длина которой меньше диаметра окружности.
Докажите, что существует диаметр, не пересекающий эту ломаную.

ВверхВниз   Решение


10 человек собрали вместе 46 грибов, причём известно, что нет двух человек, собравших одинаковое число грибов.
Сколько грибов собрал каждый?

ВверхВниз   Решение


Точка H лежит на большем основании AD равнобедренной трапеции ABCD , причём CH – высота трапеции. Найдите основания трапеции, если AH = 20 и DH= 8 .

ВверхВниз   Решение


Пусть P(x) – многочлен степени  n ≥ 2  с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа    также являются длинами сторон некоторого остроугольного треугольника.

ВверхВниз   Решение


Центр окружности радиуса 5, описанной около равнобедренной трапеции, лежит на большем основании, а меньшее основание равно 6. Найдите площадь трапеции.

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 352]      



Задача 54165

 [Теорема о средней линии трапеции]
Темы:   [ Средняя линия трапеции ]
[ Вспомогательные равные треугольники ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.

Прислать комментарий     Решение

Задача 54170

Темы:   [ Средняя линия трапеции ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Могут ли прямые BN и DM быть параллельными?

Прислать комментарий     Решение

Задача 54788

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Высота, биссектриса и медиана, выходящие из одной вершины треугольника, соответственно равны , 2 и .
Найдите радиус окружности, описанной около этого треугольника.

Прислать комментарий     Решение

Задача 54789

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP.

Прислать комментарий     Решение

Задача 54876

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Около треугольника ABC описана окружность. Продолжение биссектрисы CK треугольника ABC пересекает эту окружность в точке L, причём CL – диаметр данной окружности. Найдите отношение отрезков BL и AC, если  sin∠A = ¼.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .