ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 769]      



Задача 52454

Темы:   [ Вспомогательная окружность ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5+
Классы: 8,9

Противоположные стороны четырёхугольника, вписанного в окружность, пересекаются в точках P и Q. Найдите PQ, если касательные к окружности, проведённые из точек P и Q, равны a и b.

Прислать комментарий     Решение


Задача 53256

Темы:   [ Касающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 5+
Классы: 8,9

В полукруг помещены две окружности диаметром d и D (d < D) так, что каждая окружность касается дуги и диаметра полукруга, а также другой окружности. Через центры окружностей проведена прямая, пересекающая продолжение диаметра полукруга в точке M. Из точки M проведена касательная к дуге полукруга (N — точка касания). Найдите MN.

Прислать комментарий     Решение


Задача 108223

Темы:   [ Пересекающиеся окружности ]
[ Признаки и свойства касательной ]
[ Гомотетия помогает решить задачу ]
[ Средняя линия трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5+
Классы: 8,9,10,11

Пусть AD – биссектриса треугольника ABC и прямая l касается окружностей, описанных около треугольников ADB и ADC , в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD , DC и MN касается прямой l .
Прислать комментарий     Решение


Задача 67222

Темы:   [ Точка Нагеля. Прямая Нагеля ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
Сложность: 5+
Классы: 8,9,10,11

Автор: Шатунов Л.

Общая внешняя касательная к окружностям $\omega_1$ и $\omega_2$ касается их в точках $T_1$, $T_2$ соответственно. Пусть $A$ – произвольная точка на продолжении отрезка $T_1T_2$ за точку $T_1$, а $B$ – точка на продолжении отрезка $T_1T_2$ за точку $T_2$ такая, что $AT_1=BT_2$. Отличные от прямой $T_1T_2$ касательные из $A$ к $\omega_1$ и из $B$ к $\omega_2$ пересекаются в точке $C$. Докажите, что нагелианы всех треугольников $ABC$ из вершины $C$ проходят через одну точку.
Прислать комментарий     Решение


Задача 115410

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Метод ГМТ ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 6-
Классы: 9,10,11

Окружность с центром  I касается сторон  AB , BC , AC неравнобедренного треугольника  ABC в точках C1 , A1 , B1 соответственно. Окружности  ωB и  ωC вписаны в четырехугольники  BA1IC1 и  CA1IB1 соответственно. Докажите, что общая внутренняя касательная к  ωB и  ωC , отличная от  IA1 , проходит через точку  A .
Прислать комментарий     Решение


Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .