ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 277]      



Задача 78042

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение  x³ – 2y³ – 4z³ = 0.

Прислать комментарий     Решение

Задача 78267

Темы:   [ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

a, b, p – любые целые числа. Доказать, что найдутся такие взаимно простые k, l, что  ak + bl  делится на p.

Прислать комментарий     Решение

Задача 79651

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9

Доказать, что найдётся число вида
  а) 1989...19890...0 (несколько раз повторено число 1989, а затем стоит несколько нулей), делящееся на 1988;
  б) 1988...1988, делящееся на 1989.

Прислать комментарий     Решение

Задача 98234

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Числа Фибоначчи ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 8,9,10

Можно ли из последовательности  1, ½, ⅓, ... выбрать (сохраняя порядок)
  а) сто чисел,
  б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (ak = ak–2ak–1)?

Прислать комментарий     Решение

Задача 98252

Темы:   [ Десятичная система счисления ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1).

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 277]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .