|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В окружность вписана трапеция ABCD (AD — большее основание). Из вершины C проведён перпендикуляр к AD, пересекающий окружность в точке E. Отношение длины дуги BC (не содержащей точки D) к длине дуги CDE равно 1 : 2. Радиус окружности равен высоте трапеции. Найдите отношение AD : BC.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1284]
Хорда делит окружность в отношении 7:11. Найдите вписанные углы, опирающиеся на эту хорду.
C — точка на продолжении диаметра AB, CD — касательная, угол ADC равен 110o. Найдите угловую величину дуги BD.
Окружность разделена в отношении 7:11:6, и точки деления соединены между собой. Найдите углы полученного треугольника.
M — середина высоты BD в равнобедренном треугольнике ABC.
Точка M служит центром окружности радиуса MD. Найдите угловую
величину дуги окружности, заключённой между сторонами BA и BC,
если
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1284] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|