ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решить систему:

    10x1 + 3x2 + 4x3 + x4 + x5 = 0,
    11x2 + 2x3 + 2x4 + 3x5 + x6 = 0,
    15x3 + 4x4 + 5x5 + 4x6 + x7 = 0,
    2x1 + x2 – 3x3 + 12x4 – 3x5 + x6 + x7 = 0,
    6x1 – 5x2 + 3x3x4 + 17x5 + x6 = 0,
    3x1 + 2x2 – 3x3 + 4x4 + x5 – 16x6 + 2x7 = 0,
    4x1 – 8x2 + x3 + x4 – 3x5 + 19x7 = 0.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70]      



Задача 66956

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

Отображение $f$ ставит в соответствие каждому невырожденному треугольнику на плоскости окружность ненулевого радиуса, причем выполняются следующие условия:

– Если произвольное подобие $\sigma$ переводит треугольник $\Delta_1$ в $\Delta_2$, то $\sigma$ переводит окружность $f(\Delta_1)$ в $f(\Delta_2)$.

– Для любых четырех точек общего положения $A$, $B$, $C$, $D$ окружности $f(ABC)$, $f(BCD)$, $f(CDA)$ и $f(DAB)$ имеют общую точку.

Докажите, что для любого треугольника $\Delta$ окружность $f(\Delta)$ совпадает с окружностью девяти точек треугольника $\Delta$ .

Прислать комментарий     Решение

Задача 67377

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Точка Микеля ]
[ Гомотетия помогает решить задачу ]
[ Инверсия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 5
Классы: 9,10,11

Точка $I$ – центр вписанной окружности треугольника $ABC$. Прямые, проходящие через точку $A$ параллельно $BI$, $CI$ пересекают серединный перпендикуляр к $AI$ в точках $S$, $T$ соответственно. Прямые $BT$ и $CS$ пересекаются в точке $Y$, а точка $A^*$ такова, что $BICA^*$ параллелограмм. Докажите, что середина отрезка $YA^*$ лежит на вневписанной окружности, касающейся стороны $BC$.
Прислать комментарий     Решение


Задача 56959

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5+
Классы: 8,9,10

Высоты треугольника ABC пересекаются в точке H.
а) Докажите, что треугольники ABC, HBC, AHC и ABH имеют общую окружность девяти точек.
б) Докажите, что прямые Эйлера треугольников  ABC, HBC, AHC и ABH пересекаются в одной точке.
в) Докажите, что центры описанных окружностей треугольников  ABC, HBC, AHC и ABH образуют четырехугольник, симметричный четырехугольнику HABC.
Прислать комментарий     Решение


Задача 56962

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5+
Классы: 9

Докажите, что прямая Эйлера треугольника ABC параллельна стороне BC тогда и только тогда, когда  tgBtgC = 3.
Прислать комментарий     Решение


Задача 56963

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5+
Классы: 9

Докажите, что отрезок, высекаемый на стороне AB остроугольного треугольника ABC окружностью девяти точек, виден из ее центра под углом  2|$ \angle$A - $ \angle$B|.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .