ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Даны точки A и B. С центром в точке B проводятся окружности радиусом, не превосходящим AB, а через точку A — касательные к ним. Найдите геометрическое место точек касания.
В прямоугольнике площади 1 расположено пять фигур площади ½ каждая. Докажите, что найдутся Город представляет из себя клетчатый прямоугольник, в каждой клетке стоит пятиэтажный дом. Закон о реновации позволяет выбрать две соседних по стороне клетки, в которых стоят дома, и снести тот дом, где меньше этажей (либо столько же). При этом над вторым домом надстраивается столько этажей, сколько было в снесённом доме. Какое наименьшее число домов можно оставить в городе, пользуясь законом о реновации, если город имеет размеры Выполните построения с помощью линейки с двумя параллельными краями (двусторонней линейки) без циркуля.
Около треугольника AMB описана окружность, центр которой
удалён от стороны AM на расстояние 10. Продолжение стороны AM за
вершину M отсекает от касательной к окружности, проведённой через
вершину B , отрезок CB , равный 29. Найдите площадь треугольника
CMB , если известно, что угол ACB равен arctg Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя |
Страница: << 167 168 169 170 171 172 173 >> [Всего задач: 1224]
Имеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л двухпроцентного раствора поваренной соли. Разрешается переливать любую часть жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за несколько таких переливаний получить полуторапроцентный раствор в том сосуде, в котором вначале была вода?
Найти два шестизначных числа такие, что если их приписать друг к другу, то полученное двенадцатизначное число делится на произведение двух исходных чисел. Найти все такие пары чисел.
Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма делится на каждое из них.
Мудрецу С. сообщили сумму трёх натуральных чисел, а мудрецу П. – их
произведение.
На двух противоположных гранях игрального кубика нарисовано по одной точке, на
двух других противоположных – по две точки, и на двух оставшихся – по три точки. Из восьми таких кубиков сложили куб 2×2×2 и посчитали суммарное число точек на каждой из его шести граней.
Страница: << 167 168 169 170 171 172 173 >> [Всего задач: 1224]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке