Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 149]
Пусть в прямоугольном треугольнике AB и AC – катеты, AC > AB. На AC выбрана точка E, а на BC – точка D так, что AB = AE = BD.
Докажите, что треугольник ADE прямоугольный тогда и только тогда, когда стороны треугольника ABC относятся как 3 : 4 : 5.
Через точку A общей хорды BC пересекающихся окружностей проведена прямая, пересекающая окружности в таких точках D и E соответственно, что прямая BD касается одной окружности, а прямая BE – другой. Продолжение хорды CD одной окружности пересекает другую окружность в точке F.
а) Найдите отношение BD : BE, если AD = 8 и AE = 2.
б) Сравните площади треугольников BDE и BDF.
Две окружности пересекаются в точках
A и
B. Через
точку
A проведена секущая, вторично пересекающаяся с окружностями
в точках
P и
Q. Какую линию описывает середина отрезка
PQ, когда
секущая вращается вокруг точки
A?
|
|
Сложность: 4 Классы: 10,11
|
Четырёхугольник ABCD описан вокруг окружности, касающейся сторон AB, BC, CD, DA в точках K, L, M, N соответственно. Точки A', B', C', D' – середины отрезков LM, MN, NK, KL. Докажите, что четырёхугольник, образованный прямыми AA', BB', CC', DD', – вписанный.
Из точки
T провели касательную
TA и секущую,
пересекающую окружность в точках
B и
C .
Биссектриса угла
ATC пересекает хорды
AB и
AC в точках
P и
Q соответственно. Докажите,
что
PA= .
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 149]