Страница: 1
2 3 4 5 6 7 >> [Всего задач: 31]
|
|
Сложность: 3+ Классы: 9,10
|
Выпуклый многоугольник M переходит в себя при повороте на угол
90
0. Докажите, что найдутся два круга с отношением
радиусов, равным 2
1/2, один из которых
содержит M, а другой - содержится в M.
На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной
стороне квадрата.
Найдите величину угла MAK.
|
|
Сложность: 3+ Классы: 8,9,10
|
На диагонали $AC$ квадрата $ABCD$ взята точка $P$. Пусть $H$ – точка пересечения высот треугольника $APD$, $M$ – середина $AD$ и $N$ – середина $CD$.
Докажите, что прямые $PN$ и $MH$ взаимно перпендикулярны.
На сторонах
BC и
CD квадрата
ABCD взяты точки
M
и
K соответственно, причем
BAM =
MAK. Докажите,
что
BM +
KD =
AK.
В треугольнике
ABC проведены медиана
CM и высота
CH.
Прямые, проведенные через произвольную точку
P плоскости
перпендикулярно
CA,
CM и
CB, пересекают прямую
CH
в точках
A1,
M1 и
B1. Докажите, что
A1M1 =
B1M1.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 31]