ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Натуральные числа M и K отличаются перестановкой цифр.
Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC. Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра. |
Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 831]
На диагоналях AC и BD трапеции ABCD взяты соответственно
точки M и N так, что AM : MC = DN : NB = 1 : 4.
Дан треугольник ABC. На продолжении стороны AC за точку C
взята точка N, причём CN = 2/3 AC. Точка K находится на стороне AB, причём AK : KB = 3 : 2.
На медиане AA1 треугольника ABC взята точка M, причём AM : MA1 = 1 : 3. В каком отношении прямая BM делит сторону AC?
Отрезок прямой, параллельной основаниям трапеции, заключённый внутри трапеции, разбивается её диагоналями на три части.
Точки M и K лежат на сторонах соответственно AB и BC треугольника ABC, отрезки AK и CM пересекаются в точке P. Известно, что каждый из отрезков AK и CM делится точкой P в отношении 2 : 1, считая от вершины. Докажите, что AK и CM – медианы треугольника.
Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 831]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке