ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
На сторонах AB, BC и AD параллелограмма ABCD взяты соответственно точки K, M и L таким образом, что AK : KB = 2 : 1, BM : MC = 1 : 1, АL : LD = 1 : 3. Найдите отношение площадей треугольников KBL и BML.
Вне прямоугольного треугольника ABC на его катетах AC и BC построены квадраты ACDE и BCFG. Продолжение медианы CM треугольника ABC пересекает прямую DF в точке N. Найдите отрезок CN, если AC = 4, BC = 1. На белых и чёрных клетках доски 10×10 стоит по одинаковому количеству ладей так, что никакие две ладьи друг друга не бьют. |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]
Докажите, что расстояние между любыми двумя точками, взятыми на сторонах треугольника, не больше наибольшей из его сторон.
Пусть a, b, c — стороны произвольного треугольника. Докажите, что a2 + b2 + c2 < 2(ab + bc + ac)
Пусть h1 и h2 — высоты треугольника, r — радиус
вписанной окружности. Докажите, что
Проведите через вершину A остроугольного треугольника ABC прямую так, чтобы она не пересекала сторону BC и чтобы сумма расстояний до неё от вершин B и C была наибольшей.
Докажите,что площадь любого четырёхугольника ABCD не
превосходит
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке